
28 The Delphi Magazine Issue 39

COM Corner:
Automation Events
by Steve Teixeira

We Delphi programmers have
long taken events for

granted. You drop a button, you
double click on OnClick in the
Object Inspector, and you write
some code. No big deal. Even from
the control writer’s point of view,
events are a snap. You create a new
method type, add a field and pub-
lished property to your control,
and off you go. For Delphi COM
developers, however, events can
be scary. Many Delphi COM devel-
opers avoid events altogether. If
you fall into that group, or if you’re
one of the brave ones that imple-
mented events in your Automation
servers despite the lack of built-in
support, you’ll be happy to know
that working with events has
become much easier with Delphi 4.
While all of the new terms associ-
ated with Automation events can
add an air of complexity, in this
article I hope to de-mystify events
to the point where you think, ‘Oh,
is that all they are?’

What Are Events?
Put simply, events provide a
means for a server to call back into
a client to provide some informa-
tion. Under a traditional client/
server model, the client calls the
server to perform an action or
obtain some data, the server exe-
cutes the action or obtains the
data, and passes control to the
client. This model works fine for
most things, but it breaks down
when the event in which the client
is interested is asynchronous in
nature or is driven by user inter-
face entry. For example, if the
client sends the server a request to
download a file, the client probably
doesn’t want to sit around and wait
for the thing to download before it
can continue processing (espe-
cially over a high latency connec-
tion like a modem). A better model
would be for the client to issue the

instruction to the server and con-
tinue to go about its business until
the server notified the client about
the completion of the file down-
load. Similarly, user interface
entry, like clicking a button, is a
good example of a case when the
server needs to notify the client
using an event mechanism. The
client obviously can’t call a
method on the server that waits
around until a button is clicked.

Generally speaking, the server is
responsible for defining and firing
events, while the client is normally
responsible for connecting itself to
and implementing events. Of
course, given such a loose defini-
tion, there is room to haggle and
consequently Delphi and Automa-
tion provide two very different
approaches to events. A little drill-
down into each of these models
will put things into perspective.

Events In Delphi
Delphi follows the KISS (keep it
simple, stupid!) methodology
when it comes to events. Events
are implemented as method point-
ers: these pointers can be assigned
to some method in the application,
and are executed when such a
method is called via the method
pointer. As an illustration, con-
sider the everyday scenario of an
application that needs to handle an
event on a component. If you look
at the situation abstractly, the
‘server’ in this case would be a
component, which defines and
fires the event. The ‘client’ is the
application employing the compo-
nent, since it connects to the event
by assigning some specific method
name to the event method pointer.

While this simple event model is
one of the things that make Delphi
elegant and easy to use, it defi-
nitely sacrifices some power for
the sake of usability. For example,
there is no built-in way to allow

multiple clients to listen for the
same event (this is called
multicasting). Also, there is no way
to dynamically obtain a type
description for an event without
writing some really RTTI code
(that you probably shouldn’t be
using in an application anyway,
due to its version-specific nature).

Events In Automation
While the Delphi event model is
simple yet limited, the Automation
event model is powerful but more
complex. As you may have
guessed, events are implemented
in Automation using interfaces.
Rather than existing on a
per-method basis, events exist
only as part of an interface. This
interface is often called an events
interface or an outgoing interface.
It’s called ‘outgoing’ because it is
not implemented by the server,
like other interfaces, but is instead
implemented by clients of the
server, and methods of the inter-
face will be called outward from
server to client. Like all interfaces,
event interfaces have associated
with them a corresponded Inter-
face Identification (IID) that
uniquely identifies them. Also, the
description of the events interface
is found in the type library of an
Automation object, tied to the
Automation object’s coclass like
other interfaces.

Servers wishing to surface event
interfaces to clients must
implement the IConnectionPoint-
Container interface. This interface
is defined in the ActiveX unit as
shown in Listing 1.

In COM parlance, a connection
point is a term that describes the
entity that provides programmatic
access to an outgoing interface. If a
client wants to check if a server
supports events, all it has to do is
QueryInterface for the IConnection
PointContainer interface. If this
interface is present the server is
capable of surfacing events. The
EnumConnectionPoints method of
IConnectionPointContainer ena-
bles clients to iterate through the
outgoing interfaces supported by
the server. Clients use the Find
ConnectionPoint method to obtain
a specific outgoing interface.

November 1998 The Delphi Magazine 29

You’ll notice that FindConnection
Point provides an IConnection
Point which represents an out-
bound interface. IConnectionPoint
is also defined in the ActiveX unit,
and it looks like Listing 2.

The GetConnectionInterface
method of IConnectionPoint pro-
vides the IID of the outgoing inter-
face supported by this connection
point. The GetConnectionPoint-
Container method provides the
IConnectionPointContainer (des-
cribed above) which manages this
connection point. The Advise
method is the interesting one: it
actually does the magic of hooking
up the outgoing events on the
server to the events interface
implemented by the client. The
first parameter to this method is
the client’s implementation of the
events interface and the second
parameter will receive a cookie
that identifies this connection.
Unadvise simply disconnects the
client/server relationship estab-
lished by Advise. EnumConnections
enables the client to iterate over all
active connections (that is, all con-
nections that have called Advise).

Because of the obvious
confusion that can arise if we
describe the participants in this
relationship as simply client and
server, Automation defines some
different terminology. The imple-
mentation of the outgoing inter-
face contained within the client is
called a sink, and the server object
which fires events to the client is
referred to as the source.

What is hopefully clear in all this
is that Automation events have a
couple of advantages over Delphi
events. Namely, they can be
multicast, since IConnectionPoint.
Advise can be called more than
once. Also, Automation events are
self-describing (via the type library
and the enumeration methods), so

they can be manipulated dynami-
cally.

Delphi 4 Automation Events
Okay, all that technical stuff is well
and good, but how do we actually
make Automation events work in
Delphi? Glad you asked. At this
point, I’ll create an Automation
server application that exposes an
outgoing interface and a client
which implements a sink for the
interface. Bear in mind, too, that
you don’t need to be an expert in
connection points, sinks, sources,
and whatnot in order to get Delphi
to do what you want. But it does
help you in the long run when you
understand what goes on behind
the Wizard’s curtain.

The Server
The first step in creating the server
is to create a new application. For
this demo I will create a new appli-
cation with one form, with a client-
aligned TMemo, as shown in Figure 1.

Next, I add an Automation object
to this application by selecting
File | New | ActiveX | Automation
Object from the main menu. This
invokes the Automation Object
Wizard as shown in Figure 2.

You might notice the Generate
Event Support Code option is
new to Delphi 4. This box must
be selected, as it will generate
the code necessary to expose
an outgoing interface on the
Automation object. It will also
create the outgoing interface

in the type library. After selecting
Ok in this dialog, I am presented
with the Type Library Editor
window. Both the Automation
interface and the outgoing inter-
face are already present in the type
library (named IServerWithEvents
and IServerWithEventsEvents,
respectively). I added several new
methods to the interfaces, which
can be seen in Figure 3.

As you might guess, Clear will
clear the contents of the memo
and AddTextwill add another line of
text to the memo. The OnText-
Changed event will fire when the
contents of the memo change, and
the OnClear event will fire when the
memo is cleared. Notice also that
AddText and OnTextChanged each
have one parameter of type
WideString.

The first thing to do is imple-
ment the AddText and Clear meth-
ods. The implementation for these
methods is shown in Listing 3.

I expect you are familiar with all
of the above code except the last
line of Clear. This code checks to
ensure that there is a client sink on
the event by checking for nil, then
first fires the even simply by
calling OnClear.

To set up the OnTextChanged
event, I first have to handle the
OnChange event of the memo. I do
this by inserting a line of code into
the Initialized method of
TServerWithEvents which points
the event to my own method in
TServerWithEvents:

MainForm.Memo.OnChange :=
MemoChange;

➤ Figure 1

➤ Below: Listing 2➤ Above: Listing 1

type
IConnectionPointContainer = interface
['{B196B284-BAB4-101A-B69C-00AA00341D07}']
function EnumConnectionPoints(out Enum: IEnumConnectionPoints): HResult;
stdcall;

function FindConnectionPoint(const iid: TIID; out cp: IConnectionPoint):
HResult; stdcall;

end;

type
IConnectionPoint = interface
['{B196B286-BAB4-101A-B69C-00AA00341D07}']
function GetConnectionInterface(out iid: TIID): HResult; stdcall;
function GetConnectionPointContainer(out cpc: IConnectionPointContainer):
HResult; stdcall;

function Advise(const unkSink: IUnknown; out dwCookie: Longint): HResult;
stdcall;

function Unadvise(dwCookie: Longint): HResult; stdcall;
function EnumConnections(out Enum: IEnumConnections): HResult; stdcall;

end;

30 The Delphi Magazine Issue 39

My MemoChange method is imple-
mented as shown in Listing 4.

This code also checks to ensure
a client is listening, then fires the
event, passing the memo’s text as
the parameter.

Believe it or not, that sums it up
for the implementation of the
server! Now on to the client...

The Client
The client is an application with
one form, which contains a TEdit,
TMemo, and three TButtons, as
shown in Figure 4.

In the main unit for the client
application, I add the Server_TLB
unit to the uses clause so that I
have access to the types and meth-
ods contained within that unit. The
main form object, TMainForm, of my
client application will contain a
field which references the server
called FServer of type IServer-
WithEvents. I will create an instance
of the server in TMainForm’s con-
structor using the helper class
found in Server_TLB like this:

FServer :=
CoServerWithEvents.Create;

Next step is to implement the event
sink class. Since this class will be
called by the server via Automa-
tion, it must implement IDispatch
(and therefore IUnknown). The type
declaration for this class is shown
in Listing 5.

Most of the methods of IUnkown
and IDispatch aren’t implemented,
with the notable exception of

procedure TServerWithEvents.AddText(const NewText: WideString);
begin
MainForm.Memo.Lines.Add(NewText);

end;
procedure TServerWithEvents.Clear;
begin
MainForm.Memo.Lines.Clear;
if FEvents <> nil then FEvents.OnClear;

end;

IUnknown.QueryInterface and
IDispatch.Invoke. We will discuss
these in turn.

The QueryInterface method for
TEventSink is implemented as in
Listing 6.

Essentially, this method returns
an instance only when the
requested interface is IUnknown,
IDispatch or IServerWithEvents-
Events. The Invoke method for
TEventSink is shown in Listing 7.

TEventSink.Invoke is hard-coded
for methods having DispID 1 or
DispID 2, which happen to be the
DispIDs I chose for OnTextChanged
and OnClear respectively in my
server application. OnClear has the
most straightforward implementa-
tion: it simply calls the client main
form’s OnClear method in response
to the event. The OnTextChanged
event is a little trickier: this code
pulls the parameter out of the
Params.rgvarg array, which is
passed in as a parameter to
this method, and passes it
through to the client main
form’s OnServerMemoChanged
method. Note that since I
knew the number and type
of parameters, I was able to
make simplifying assump-
tions in my source code. If

you’re clever, it is possible to
implement Invoke in a generic
manner such that it figures out the
number and types of parameters
and pushes them onto the stack
and/or into registers prior to call-
ing the appropriate function. If
you’d like to see an example of this,
take a look at the TOleControl.
InvokeEvent method in the
OleCtrls unit. That method repre-
sents the event sinking logic for
the ActiveX control container.

The implementation for OnClear
and OnServerMemoChanged manipu-
late the contents of the client’s
memo, and they are shown in
Listing 8.

The final piece of the puzzle is to
connect the event sink to the
server’s source interface. This is
easily accomplished using the
InterfaceConnect function found in

➤ Left: Figure 2
➤ Right: Figure 3

➤ Figure 4

➤ Listing 3

32 The Delphi Magazine Issue 39

the ComObj unit, which I call from
the main form’s contructor like so:

InterfaceConnect(FServer,
IServerWithEventsEvents,
FEventSink, FCookie);

The first parameter to this function
is a reference to the source object.
Parameter two is the IID of the out-
going interface. The third parame-
ter holds the event sink interface.
The fourth and final parameter is
the cookie, and it is a reference
parameter that will be filled in by
the callee.

To be a good citizen, you should
also clean up properly by calling
InterfaceDisconnect when you are
finished playing with events. I do
this in the main form’s destructor:

InterfaceDisconnect(FEventSink,
IServerWithEventsEvents,
FCookie);

The Demo
Now that the client and server are
written, we can see them in action.
Be sure to run and close the server
once (or run with the /regserver
switch) to ensure it is registered
before attempting to run the client.
Figure 5 shows the interactions
between client, server, source and
sink in living color.

Summary
We covered a lot of ground in a
short amount of time, including
events in general, Delphi and Auto-
mation events specifically, and
how to use these events in your
Automation applications. Hope-
fully, Automation events make a
little more sense now. More impor-
tantly, I hope you now have a
better idea how to use Automation
events in your own Delphi
applications.

Steve Teixeira is Director of Soft-
ware Development at DeVries
Data Systems, a consulting firm
specializing in Delphi develop-
ment, and co-author of Delphi 4
Developer’s Guide. If you have a
COM question that you would like
to see answered in this column,
email Steve at steve@dvdata.com

➤ Below: Listing 7➤ Above: Listing 6

➤ Below: Listing 5➤ Above: Listing 4

procedure TServerWithEvents.MemoChange(Sender: TObject);
begin
if FEvents <> nil then FEvents.OnTextChanged((Sender as TMemo).Text);

end;

type
TEventSink = class(TObject, IUnknown, IDispatch)
private
FController: TMainForm;
{ IUnknown }
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
{ IDispatch }
function GetTypeInfoCount(out Count: Integer): HResult; stdcall;
function GetTypeInfo(Index, LocaleID: Integer; out TypeInfo):
HResult; stdcall;

function GetIDsOfNames(const IID: TGUID; Names: Pointer;
NameCount, LocaleID: Integer; DispIDs: Pointer): HResult; stdcall;

function Invoke(DispID: Integer; const IID: TGUID; LocaleID: Integer; Flags:
Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): HResult; stdcall;

public
constructor Create(Controller: TMainForm);

end;

function TEventSink.QueryInterface(const IID: TGUID; out Obj): HResult;
begin
// First look for my own implementation of an interface
// (I implement IUnknown and IDispatch).
if GetInterface(IID, Obj) then
Result := S_OK

// Next, if they are looking for outgoing interface, recurse to return
// our IDispatch pointer.
else if IsEqualIID(IID, IServerWithEventsEvents) then
Result := QueryInterface(IDispatch, Obj)

else
Result := E_NOINTERFACE; // For everything else, return an error.

end;

function TEventSink.Invoke(DispID: Integer; const IID: TGUID;LocaleID: Integer;
Flags: Word; var Params; VarResult, ExcepInfo, ArgErr: Pointer): HResult;

var V: OleVariant;
begin
Result := S_OK;
case DispID of
1 : begin

V := OleVariant(TDispParams(Params).rgvarg^[0]); // new string
FController.OnServerMemoChanged(V);

end;
2 : FController.OnClear;

end;
end;

procedure TMainForm.OnServerMemoChanged(const NewText: string);
begin
Memo.Text := NewText;

end;
procedure TMainForm.OnClear;
begin
Memo.Clear;

end;

➤ Below: Figure 5
➤ Listing 8

	What Are Events?
	Events In Delphi
	Events In Automation
	Delphi 4 Automation Events
	The Server
	The Client
	The Demo
	Summary

